

FINAL YEAR PROJECT RESEARCH REPORT

Project Title: IGNIS, Vulnerability Management Personal

Assistant

Created By

Khairul Amirin Bin Syahrean

Student Number: C00265680

4th Year (Hons) Cybercrime and IT Security

South East Technological University Carlow Campus

Supervised by

Richard Butler

April 19, 2024

Page 2 of 39

Abstract

This is the final report of Ignis, a project for creating AI-powered personal assistant to enhance

IT security operations by managing vulnerabilities. Utilizing technologies like LangChain,

GPT-3.5 Turbo, and Streamlit, this initiative resulted in a chatbot capable of real-time

interactions and tasks such as vulnerability assessment and automated communications.

This document showcases the deliverable, my experience in the project and problems

encountered during development. Finally, I would present the key lessons obtained from this

endeavour. These lessons include understanding vulnerability management, limits of AI, and

data management.

Page 3 of 39

Acknowledgements

I would like to thank Richard Butler, my project supervisor for overseeing my project

development and testing my project prototypes. His invaluable guidance and unwavering

support throughout the development of this project. His insights and expertise were crucial in

steering the project towards success, and his encouragement kept me motivated during

challenging periods.

I would also like to thank Joseph Kehoe, the 4th year project manager for Cybercrime

and IT Security students. His advice and recommendations always ensure I keep my project in

line with proper guidelines.

Additionally, I would like to thank my peers from 4th Cybercrime and IT Security for

their support.

Page 4 of 39

Contents

Abstract ... 2

Acknowledgements ... 3

Introduction ... 5

Project Description .. 6

Notable Technologies Used: ... 6

Project Deliverable .. 7

Front End Graphical Interface... 8

MENU PAGE .. 8

LOGIN PAGE ... 9

CHAT PAGE ... 11

SCAN REPORT UPLOAD PAGE .. 13

VULNERABILITY ASSIGNMENT PAGE ... 14

VULNERABILITY STATUS PAGE .. 15

EMAIL PAGE ... 16

Back End Architecture .. 17

GPT API .. 17

History Management ... 19

Vector Database .. 21

SQL database .. 23

Application Testing and Use Case Examples. ... 24

General Issues ... 28

Problems Encountered During Development: .. 28

Achieved/Not Achieved Goals .. 30

Notable application Differences between start and end of development .. 33

Learning Outcomes ... 35

Improvements for Future Initiatives ... 36

Conclusion: ... 37

Appendix ... 38

Declaration of Plagiarism ... 39

Page 5 of 39

Introduction

In this final report, I document the culmination of my final year project, IGNIS, a vulnerability

management application with AI capabilities. Throughout the duration of this project, I have

gained invaluable insights and knowledge in various areas of software design, development,

and application deployment.

The journey from conceptualization of an AI chatbot to the final deployment of the

application was filled with unexpected challenges, learning opportunities, and significant

milestones with each one giving me a confidence boost to reach the end. This experience has

not only enhanced my technical skills in app building and utilizing LLMs but also fostered a

deeper understanding in developing solutions for real-world IT security scenarios.

This report aims to not only showcase the final product and test runs conducted, but

also to discuss the key learnings and takeaways that have emerged during the development of

IGNIS. It serves as both a reflection on the achievements I obtained, the challenges

encountered, and the key steps I took throughout the project lifecycle.

Page 6 of 39

Project Description

Ignis is an AI-powered chatbot that acts as a personal assistant focused on overseeing and

handling vulnerability management for a company's IT security infrastructure. This assistant

aims to facilitate real-time, user-friendly interactions by providing immediate insights on

threats and vulnerabilities, enhancing IT security operations within the organization.

Notable Technologies Used:

• LangChain: Utilized as the fundamental AI technology to empower the chatbot

functionalities within the application, leveraging advanced NLP capabilities to

understand and respond to user queries regarding IT security vulnerabilities.

• GPT 3.5 Turbo: The core language model offers robust AI-powered responses, making

the personal assistant capable of human-like interactions and providing precise

vulnerability insights extracted from integrated security tool data.

• Streamlit: Primary backbone for developing the user interface. Streamlit’s web

framework simplifies the creation of user-friendly, interactive tools that allow

cybersecurity personnel to seamlessly interact with the AI chatbot and retrieve

vulnerability reports.

• ChromaDB: designed to effectively manage and retrieve large sets of vectors generated

by the AI for purposes such as searching, comparing, and analysing data. The AI chatbot

can quickly access historical data, optimizing the process of identifying and responding

to security vulnerabilities and threats in an organization's IT infrastructure. This results

in theory, a more informed and efficient vulnerability management system, significantly

bolstering IT security protocols and response strategies.

To run the project:

1. Install python packages on requirements.txt.

2. Have XAMPP installed and import ignis.sql found zipped with project files.

3. Run menu.py on the console terminal of the IDE.

Page 7 of 39

Project Deliverable

Figure 1: Project Frontpage

The main UI takes majority of the screen to the right. There is a sidebar to the left that can be

minimized for more space for the main console.

Use cases:

• Users can query for security status of the network environment. (Chat)

• Upload scan reports to the database (Scan Upload)

• Email remediation teams if needed. (Email)

• Assign vulnerabilities to remediation teams (triaging)

• List vulnerabilities, statuses and assigned remediation teams. (Status)

Page 8 of 39

Front End Graphical Interface

MENU PAGE

Figure 2: Sidebar Menu

Creating the Sidebar Menu:

• The script creates a sidebar menu using the option_menu function, part of streamlit’s

many embedded functions.

• The menu includes options each associated with an icon and is styled with different

CSS properties such as background color, text color, and font size.

Based on the selected menu option, the script calls the corresponding app function defined in the

imported modules. (scan, chat, emailing, triage, list)

Page 9 of 39

LOGIN PAGE

Figure 3: Authentication Widget

I imported a package called streamlit_authenticator. Users must enter their username and

password. It provides basic authentication service, denying access to Ignis if crendentials are

wrong or is empty.

Figure 4: All user information stored on a .yaml file.

Page 10 of 39

The streamlit_authenticator package interacts with a yaml file to manage authentication.

Passwords are hashed using bcrypt function. Storing passwords in plaintext puts a massive risk

on application confidentiality. For future implementation I would set up a separate server

specifically for authenticating users.

Note: Originally I had planned to add a registration page and change password feature but felt

it was unnecessary as cybersecurity users should be registered with administrators handling

the application’s backend rather than self-registration.

Page 11 of 39

CHAT PAGE

Figure 5: Chat Interface

The main interface for cybersecurity users to interact with the OpenAI API.

The user can enter their query in the chat input field provided at the bottom of the page.

The Ignis chatbot knows the user’s name and associated occupation, tailoring the user’s needs

according to said information.

Responses take approximately 5 – 8 seconds, having to process the user’s query, whole

conversation history and attached prompt, to be sent to the API.

Page 12 of 39

Figure 6: Save and Load Widgets

There is an option for users to save and load queries to make interaction with the bot a lot

efficient. These options appear below the sidebar menu on the chat page.

If the user selects a prompt from the dropdown menu and clicks the "Load query"

button, the code retrieves the corresponding query and prompt from the MySQL database and

sets the user query to a predefined message containing the loaded query.

If the user enters a name for the query in the sidebar and clicks the arrow button, Ignis

will save the last message sent by the user to the SQL database to be used in the future.

Page 13 of 39

SCAN REPORT UPLOAD PAGE

Figure 7: Upload widget

As shown in the picture, a user can only upload a maximum size of 200MB per file. There is

no hard limit on the database size itself. This means multiple files can be uploaded to the

application.

Figure 8: Code snippet of the upload function

Several functions are called from the main python file (chat.py). Text from the pdf file uploaded

is extracted, segregated into chunks, and stored into ChromaDB database. These functions are

broken down in backend section of the report.

Page 14 of 39

VULNERABILITY ASSIGNMENT PAGE

Figure 9: Vulnerability Assignment page

Generating Vulnerability:

When the "Generate Vulnerability" button is clicked, it uses an OpenAI model to identify the

main vulnerability and list relevant information. The vulnerability information is displayed in

a text area.

Upon clicking the "Submit" button:-

- Connects to a local MySQL database.

- Inserts the vulnerability title, information, remediation team, and status into the

'vulnerabilities' table.

- Commits the changes and closes the database connection.

- Displays a success message confirming that the vulnerability information has been

saved and assigned to the remediation team.

Page 15 of 39

VULNERABILITY STATUS PAGE

Figure 10: Table showing assigned vulnerabilities

Initializes a list to display all vulnerability information. If there is vulnerability data available,

it displays it in a table with columns:

- Team

- Vulnerability Title

- Remediation Status

- Risk

Currently there is no option to delete entries from the list unless an administrator interacts

with the database directly.

Page 16 of 39

EMAIL PAGE

Figure 11: Email widget

The initial setup involves displaying input fields for the sender's email, selecting a remediation team,

and entering an email subject.

Figure 12: Email auto-generator

The green text is the prompt used to instruct GPT how the email should be formatted. When the

"Generate Email from Chat History" button is clicked, the code initiates a prompt for generating the

email content based on chat history to be sent to the OpenAI API.

The generated email response is then sent back and displayed on the email body text area for the user

to review and possibly edit. A demo of this is shown on use case section.

Page 17 of 39

Back End Architecture

GPT API

Halfway through the project’s development I attempted to create fine-tuned model.

Figure 13: GPT model finished fine-tuning

I opt to train using OpenAI’s dedicated fine-tune feature available on the website. There is also an option

to conduct the training process using python code hosted on the local machine. OpenAI’s website has a

cleaner and easier to understand UI.

Figure 14: Single sample of the training data used for fine-tuning the model.

Page 18 of 39

Loading GPT Model:

The default model name and API key is stored in .env file. The GPT model is loaded using the

ChatOpenAI class, specifying parameters such as temperature.

Ignis dynamically interacts with the GPT API based on the user's input and the context of the

conversation, allowing the AI assistant to provide relevant and tailored responses in real-time.

Figure 15: Code snippet of context retriever

Retrieval and Generation Chains:

• The script creates a chain of retrievers and generators to interact with the GPT model.

• The create_history_aware_retriever function is used to create a retriever chain that

considers the conversation history with the user and prompt when retrieving

information from the ChromaDB database.

• Subsequently, a conversational retrieval-augmented generation (RAG) chain is

created using the create_retrieval_chain function to combine the retriever chain with

the generation logic.

1. Handling User Input:

• When a user inputs a message through the chat interface, the script calls the invoke

method on the conversation RAG chain to generate a response based on the

conversation context and the user's query.

• The script defines a context prompt template to provide context to the GPT model for

generating responses.

Page 19 of 39

• The response generated by the GPT model is then displayed back to the user in the

chat interface.

History Management

Figure 16: Code snippet for printing chat history

1. Initialization:

• When the user first interacts with the application, the initial messages are predefined.

2. Storing Chat History:

• The chat history is stored in the st.session_state.chat_history variable. This variable is

initialized to hold messages exchanged between the user and the AI assistant.

• Messages are stored as instances of AIMessage and HumanMessage classes,

distinguishing between messages generated by the AI and the user.

3. User Input:

• Users can input messages through a chat input box. The entered text is stored as

user_query for processing.

4. Processing User Input:

• When a user submits a message, the script processes the input using functions that

involve querying a database and generating responses based on the context.

Page 20 of 39

5. Displaying Chat Messages:

• The chat messages are displayed in the conversation area of the chatbot interface.

• Messages exchanged between the AI and the user are shown with the sender's name

(AI or Human) and the content of the message.

6. Saving Conversations:

• The script includes functionality to save the last three conversations to the MySQL

database. This process involves updating existing records with new messages or

inserting new records if no previous data is found.

7. Loading Previous Queries:

• Users have the option to load previously saved queries from the database. The script

retrieves saved queries based on the user's selection and pre-populates the chat

interface with the selected query for further interaction.

8. Updating Chat History:

• At each step of the conversation, chat history is updated with new messages added by

the user and responses generated by the AI assistant.

Notes: Each time the API is called, the whole chat history, additional user queries and data pulled

from vector database is sent to GPT 3.5 to be processed. The longer the overall text load and token

count sent from base application, the more expensive the overhead and time needed to process an

output. GPT does not have a built-in memory feature for custom LLM application building.

Page 21 of 39

Vector Database

Figure 17: File of Hierarchy for ChromaDB database

ChromaDB is used as a vector database to store and retrieve embeddings for text chunks.

Here is how Chroma is utilized as a vector database in the context of the given script:

Figure 18: Text extractor and splitter

The first function (extract_pdf_text) goes through an uploaded file from the upload page and

extracts all as a singular variable.

This variable called ‘raw text’ is then put through the second function. Text chunks are

generated by splitting raw text into chunks using the RecursiveCharacterTextSplitter class.

Page 22 of 39

Figure 19: ChromaDB creation function

1. Creating and Persisting the Vector Store:

• If not present, Ignis automatically creates a vector database called ‘scan_database’.

• The vector store created with Chroma is persisted to a directory using the persist()

method. This allows the vector embeddings to be saved for future use without needing

to recreate them each time the script runs.

Figure 20: Code snippet for storing information

2. Retrieving Vectors:

• Ignis loads the vector store from the persistent directory using the Chroma constructor,

specifying the directory path and the embedding function used.

3. Utilizing Vectors for Context Retrieval:

• The Chroma vector database stores all vital security scanning information of the

organization. Data pulled is used to create a context retriever chain that considers the

vector embeddings of text chunks when retrieving information relevant to the current

conversation context.

Page 23 of 39

4. Dynamic Vector Handling:

• The script dynamically manages the vector store created with Chroma to efficiently

handle and retrieve vector embeddings for text chunks as needed during the

conversation interactions.

SQL database

Figure 21: MariaDB database

Two tables are mainly used for Ignis’s operations.

• Prompt

- Stores user’s queries. These queries can be called to quicken bot interaction

• Vulnerabilities

- Contains vulnerabilities and teams assigned to them.

The third table (remediation_team) is just for experimenting with setting up the SQL database to store

credentials and is not used for the final project.

Page 24 of 39

Application Testing and Use Case Examples.

1. Testing the API calling by giving user query.

Figure 22: Chatting

ChromaDB currently has a Nessus scan report conducted on my local machine. Ignis is using

GPT to access the vector database, pull information based on whether the content matches the

context of the user’s query.

GPT would then process the information and turn it into a response to be outputted on the

chatbot interface.

Page 25 of 39

Figure 23: 2nd query attempted.

Figure 24: 3rd query.

Figure 25: Random questioning.

Through fine-tuning and chat prompt, Ignis is less likely to answer non-security related

questions.

Page 26 of 39

Figure 26: Email widget.

The email is taken from the saved credentials of the user. User can select which remediation

team to broadcast the email to.

Page 27 of 39

Figure 27: Vulnerability Triaging

User can generate vulnerability description by clicking the button. Ignis will scan the

conversation history, extract the main vulnerability, and turn it into a response to be saved

into the database.

Figure 28: Vulnerability List

All information is displayed in a table. This information can be used for other digital

management platforms.

Page 28 of 39

General Issues

Problems Encountered During Development:

Understanding Chat History and Tool Integration:

One of the significant challenges faced during the development process was effectively incorporating

historical chat data into the application. The complexities surrounding the structure and real-time

retrieval of data in live applications posed difficulties in seamlessly integrating chat history.

Additionally, grasping the concept of chains within the LangChain framework required extra effort and

understanding.

Adapting to the Open-Source Environment:

LangChain, being an open-source platform, undergoes frequent updates to its packages. This

dynamic nature of the environment presented a challenge as deprecated packages needed to be

replaced, and new ones had to be integrated continuously throughout the development process.

Staying up to date with the latest changes and ensuring compatibility required constant

attention and effort.

My biggest failure was knowing the limits of AI and its reasoning capability at the start of the project.

With the assumption “AI is capable of running code by itself”, I also overestimated LangChain’s

framework for AI apps as it is difficult to use it for commercial purposes.

Streamlit's Limitations in Customization:

While Streamlit provided a convenient framework for building the application, it posed

limitations in terms of customization options. Creating a production-level application with

desired customizations and advanced features proved to be challenging within the constraints

of Streamlit's capabilities and lack of proper documentation for using the library.

Inconsistent Responses from GPT API:

During the initial stages of development, the responses generated by the GPT API were

inconsistent and sometimes lacked coherence. To address this issue, efforts were made to refine

the prompts and fine-tune the API, resulting in slightly improved response quality and

relevance.

Page 29 of 39

Inefficient Data Parsing Techniques:

Initially, the CSV format was used for data parsing, which led to suboptimal performance and

efficiency. To overcome this limitation, the approach was switched to using PDF format. This

change enabled more efficient parsing and seamless embedding of data into the vector database,

enhancing overall system performance.

I initially used token and character-based text splitters to segregate chunks of text to be stored

into the database. This created a set of data that is incoherent and difficult to query. I switched

to recursive based text splitting as it uses certain guidelines to store a segment of text into the

database and can be called easily by the OpenAI API.

AI Model Optimization

Was unable to properly fine-tune the AI model due to high costs and resource requirements.

Some attempts are madeProper training of AI models demands significant capital investment

and computational resources. Creating an ideal model requires numerous iterations, which

proved to be a resource-intensive process.

Page 30 of 39

Achieved/Not Achieved Goals

GUI

Expectation:

Release quality product including attractive GUI and features optimized for speed and ease of

use.

Obtained:

The GUI is simple and easy to understand for new users. Users can switch pages using the

menu on the sidebar of the webpage. The application connects to ChromaDB (Vector) and

MariaDB (SQL) databases, which may affect the speed. The overall expectation for each

request to the API and response is 6 to 8 seconds.

Advanced Chatbot Comprehension

Expectation:

Human-like interaction and responses.

Obtained:

With GPT-3.5, responses are typical to a GPT-style interaction. Usable but not entirely seamless

and tends to add unnecessary information. The temperature is set to 0.7, slightly encouraging

the API to provide more creative responses without affecting the meaning of the output. Using

chat history as context and giving it to the chatbot helps to reduce hallucinations and maintain

the direction of the conversation.

Comprehensive Asset Rundown

Expected:

Provide insight into assets using historical data (common vulnerabilities).

Obtained:

Security scan results are stored in a vector database. Ignis can differentiate between hosts and

their vulnerabilities based on the date of scans. Its capability to form conclusions and inferences

however between these scans is not reliable as GPT tends to avoid making conclusive

statements. (Using GPT 4 alleviates this problem slightly but still inconsistent)

Page 31 of 39

Scanning Capability

 Expected:

Can execute Python scripts for running Nmap and Nessus functionalities by installing the

appropriate libraries. Results will be replied to the user on the web interface.

Obtained:

Rather than having it executed from Ignis's GUI, I added a section where users can upload scan

results into the vector databases.

Automated Database Updates

 Expected:

Weekly scans are conducted and stored using VMs simulating a network environment of an

organization.

Obtained:

Attempted to set up the environment but due to Nessus licensing issues I failed to set up Nessus

scanners on Virtual Machines.

Targeted Remediation

Expected:

Provide recommendations based on an existing knowledge base.

Obtained:

The vector database allows Ignis to also store knowledge bases for remediation. However, Ignis

often pulls remediations from the scan reports themselves unless specified not to do so. (uses

less resources possibly.)

Page 32 of 39

Incident Triaging

Expected:

Assign vulnerabilities to the appropriate response team through email.

Obtained:

There is an email section where Ignis can create the email body based on chat history. I also

added a triaging system where Ignis parses the chat history, outputs the main vulnerability

discussed, and assigns it to a remediation team. There is a page dedicated to displaying live

vulnerabilities and assigned teams.

Page 33 of 39

Notable application Differences between start and end of development

Large Language Model

Initial LLM: Llama 2

At the beginning of the development, Ignis utilized Llama 2, a locally hosted LLM, to power its natural

language processing capabilities.

Transition to GPT 3.5 Turbo

As the development progressed, the decision was made to switch from Llama 2 to GPT 3.5 Turbo, a

cloud based LLM. GPT 3.5 Turbo offered enhanced performance, improved language understanding,

and a more extensive knowledge base. The transition to a cloud based LLM also eliminated the need

for local hosting, reducing infrastructure complexity and maintenance efforts.

Web Framework

Initial Framework: Flask

During the early stages of development, Ignis was built using the Flask web framework.

Migration to Streamlit

As the project evolved, the decision was made to switch from Flask to Streamlit. Streamlit offered a

more user-friendly and intuitive framework for building interactive web applications, making it easier

to create and customize the chatbot's user interface. The migration to Streamlit streamlined the

development process and enhanced the overall user experience of Ignis.

Triaging Mechanism

Initial Approach: Email-based Triaging

In the initial version of Ignis, the triaging mechanism relied on email communication.

Enhanced Triaging with Dedicated Database

As the application matured, a unique incident triaging mechanism was implemented, supported by its

own dedicated database. This new triaging system allowed for more efficient and organized handling

of user queries and incidents. The dedicated database enabled better tracking, categorization, and

prioritization of incidents, improving the overall effectiveness of the chatbot's triaging capabilities.

Page 34 of 39

Scan Report Format

Initial Format: CSV

In the early stages of development, Ignis generated scan reports in the CSV (Comma Separated

Values) format. CSV provided a simple and widely compatible format for storing and sharing scan

reports.

Transition to PDF

PDF offered a more professional and visually appealing format for presenting scan results. The

transition to PDF improved the readability and usability of the scan reports, making them more

accessible and easier to share with future stakeholders.

Databases

Initial Database: FAISS

Initially, Ignis utilized FAISS (Facebook AI Similarity Search) as its vector database solution. FAISS

provided basic similarity search capabilities, enabling the chatbot to retrieve relevant information

based on user queries.

Migration to ChromaDB

ChromaDB offered enhanced performance, scalability, and flexibility compared to FAISS. The

migration to ChromaDB improved the chatbot's ability to handle larger datasets and complex queries,

ensuring faster and more accurate responses.

Page 35 of 39

Learning Outcomes

During the project, several key learnings were acquired:

1. Vulnerability Management Process: Gained an understanding of how vulnerability

management processes are designed and executed. This involves identifying,

classifying, remediating, and validating vulnerabilities in software.

2. App Building that fits real world scenarios: Applications must be made with the goal

always in mind during development. Having the application tested with cybersecurity

experts ensures the application benefits the target audience, in this case cybersecurity

and TVM (Threat and Vulnerability Management) personnel.

3. AI Reasoning Capabilities and Limitations: The project exposed limitations in AI

reasoning, showing that often the capabilities of AI in decision-making can be

overestimated and unreliable. It also depends on the language models used. High Tier

models such as GPT 4 or Claude 3 perform better than previous generation models such

as GPT 3.5 or Llama 2 even.

4. Integration of AI with Data Management Systems: Successfully implemented

LangChain to integrate AI into the data management systems, despite its arbitrary

naming conventions and poor library management. This overall allowed for more

efficient processing and analysis of data through AI-driven insights.

5. Importance of Managing Credentials: Recognized the critical importance of securely

managing credentials to prevent unauthorized access and ensure the integrity of the

system.

6. Vector Databases and Embeddings: Explored the capabilities of vector databases and

learned how embeddings can be effectively utilized to improve the accuracy and

performance of AI applications.

7. AI Biases and Fine-Tuning: LLMs are predisposed to follow certain formats and self-

biases which may affect overall output. We must use prompts and fine-tuning through

large data sampling to ensure LLMs produce output fitting the given task.

Page 36 of 39

Improvements for Future Initiatives

If I were to redo project development, there would be several steps to adjust:

• Better balance on Web Application Building: Initially, there was a substantial focus

on developing the backend portion of the project. We must put emphasis on ease of use,

which increases the likelihood of my application being chosen over other solutions.

• Dataset Enhancement: Would invest more effort into fine-tuning existing datasets and

creating enriched sample data which could lead to more robust AI models and

simulations.

• Increased Focus on Incident Triaging: Recognizing the importance of this aspect,

more resources and time would be allocated to develop effective strategies for incident

triaging to manage potential threats and vulnerabilities more promptly. Often

vulnerabilities would take a long time to resolve and be validated due to poor

management. I would implement a more automated system to assign vulnerabilities to

remediation teams and monitor their remediation progress.

• Host vector database on MongoDB or Pinecone: There are certain pros and cons on

having a cloud based commercial database or locally hosted database in the

organization. Cloud database providers would reduce workload to setup and manage

database updates and security patches.

• Set up proper scanning environments: Other security companies such as Tenable or

Qualys can offer to set up scanners for organizations. While my application is more

focused on assessing and remediating vulnerabilities, having a proper set up of scanners

would show off more of Ignis’ capability to handle large datasets and history databanks.

• Proprietary Scanners: Ignis is built around being able to process scan reports from

various software (Nessus, Nmap, Zap). We can fine-tune and edit prompts to fit with a

specific scan report format to improve data parsing and chat output from OpenAI API.

• QoL Features: Voice recognition and image processing (screenshots of

vulnerabilities) to improve quality of life performance of the application.

Page 37 of 39

Conclusion:

Large Language Models (LLMs) are now widely used in many sectors, showing their big

influence. My current project is a great example of how we can make managing threats and

vulnerabilities much better.

One of the many struggles TVM members go through is assessing the vulnerability

properly. Members usually cross check with historical reports of hosts to know more about the

vulnerability. Assigning it to the correct team can be a hassle as well.

Through Ignis, that aims on improving user-friendliness for cybersecurity interaction,

speed on familiarizing with the network environment and linking directly with a scanning

database, this project makes security checks easier and more effective. It illustrates how LLMs

can be used not just for handling large data but also for improving cybersecurity as our world

grows more connected.

I hope through Ignis’s existence as an easy to use, text-based interaction security

platform, we've made various vulnerability management processes smoother, which helps

perform security assessments more efficiently. Using LLMs speeds up how fast we process

security threats and strengthens our IT systems against complex cyber threats. Ultimately,

implementing AI capabilities highlights a shift towards more secure, effective, and adaptable

IT security space, and is a key advancement in managing future threats and security practices.

Page 38 of 39

Appendix
Figure 1: Project Frontpage .. 7

Figure 2: Sidebar Menu .. 8

Figure 3: Authentication Widget ... 9

Figure 4: All user information stored on a .yaml file. ... 9

Figure 5: Chat Interface .. 11

Figure 6: Save and Load Widgets ... 12

Figure 7: Upload widget ... 13

Figure 8: Code snippet of the upload function .. 13

Figure 9: Vulnerability Assignment page .. 14

Figure 10: Table showing assigned vulnerabilities ... 15

Figure 11: Email widget .. 16

Figure 12: Email auto-generator ... 16

Figure 13: GPT model finished fine-tuning .. 17

Figure 14: Single sample of the training data used for fine-tuning the model. 17

Figure 15: Code snippet of context retriever .. 18

Figure 16: Code snippet for printing chat history ... 19

Figure 17: File of Hierarchy for ChromaDB database .. 21

Figure 18: Text extracter and splitter .. 21

Figure 19: ChromaDB creation function .. 22

Figure 20: Code snippet for storing information... 22

Figure 21: MariaDB database ... 23

Figure 22: Chatting ... 24

Figure 23: 2nd query attempted. ... 25

Figure 24: 3rd query. ... 25

Figure 25: Random questioning. ... 25

Figure 26: Email widget. ... 26

Figure 27: Vulnerability Triaging ... 27

Figure 28: Vulnerability List ... 27

Page 39 of 39

Declaration of Plagiarism

I declare that this document and any previous submissions by myself is of my own work unless

mentioned and acknowledged otherwise. Any external sources such as diagrams, quotes, tables

etc. are all cited properly. This includes software and other electronic media intellectual

property may reside. I am aware and understand that failure to follow any of the Institute’s

regulations governing plagiarism constitutes a serious offense.

Student Name: Khairul Amirin Bin Syahrean

Student Number: C00265680

Signature Date: 19/04/2024

Supervisor: Richard Butler

Institution: South Eash Technological University

Signed: __________________________

